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We examine the stability characteristics of a two-dimensional flow which consists 
initially of an inflexionally unstable shear layer on anjlplane. Under the action of the 
primary instability, the vorticity in the shear-layer initially coalesces into two 
Kelvin-Helmholtz vortices which subsequently merge to form a single coherent vortex. 
At a sequence of times during this process, we test the stability of the two-dimensional 
flow to fully three-dimensional perturbations. A somewhat novel approach is developed 
which removes inconsistencies in the secondary stability analyses which might 
otherwise arise owing to the time-dependence of the two-dimensional flow. 

In the non-rotating case, and before the onset of pairing, we obtain a spectrum of 
unstable longitudinal modes which is similar to that obtained previously by 
Pierrehumbert & Widnall(1982) for the Stuart vortex, and by Klaassen & Peltier (1985, 
1989, 1991) for more realistic flows. In addition, we demonstrate the existence of a new 
sequence of three-dimensional subharmonic (and therefore ‘helical ’) instabilities. After 
pairing is complete, the secondary instability spectrum is essentially unaltered except 
for a doubling of length- and timescales that is consistent with the notion of spatial and 
temporal self-similarity. Once pairing begins, the spectrum quickly becomes dominated 
by the unstable modes of the emerging subharmonic Kelvin-Helmholtz vortex, and is 
therefore similar to that which is characteristic of the post-pairing regime. Also in the 
context of non-rotating flow, we demonstrate that the direct transfer of energy into the 
dissipative subrange via secondary instability is possible only if the background flow 
is stationary, since even slow time-dependence acts to decorrelate small-scale modes 
and thereby to impose a short-wave cutoff on the spectrum. 

The stability of the merged vortex state is assessed for various values of the planetary 
vorticity f. Slow rotation may either stabilize or destabilize the columnar vortices, 
depending upon the sign off, while fast rotation of either sign tends to be stabilizing. 
When f has opposite sign to the relative vorticity of the two-dimensional basic state, 
the flow becomes unstable to a new mode of instability that has not been previously 
identified. Modes whose energy is concentrated in the vortex cores are shown to be 
associated, even at non-zero f ,  with Pierrehumbert’s (1986) elliptical instability. 
Through detailed consideration of the vortex interaction mechanisms which drive 
instability, we are able to provide physical explanations for many aspects of the three- 
dimensionalization process. 

1. Introduction 
Geophysical flows are often dominated by horizontal motions (e.g. McWilliams 

1983), and insight into the dynamics of such flows may therefore often be gained 
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through the analysis of numerically evolved two-dimensional model flows. Such 
analyses have most often focused upon isotropic two-dimensional turbulence which is 
forced at some non-zero wavenumber (e.g. Benzi, Patarnello & Santangelo 1988). 
However, geophysical flows also tend to be characterized by large-scale shears in the 
horizontal velocity, and the resulting anisotropic effects can play a dominant role in 
governing their dynamical evolution (e.g. Shepherd 1987; Lesieur et al. 1988; Smyth 
1992; Smyth & Peltier 1993). If the planetary vorticity gradient /3 is sufficiently small, 
the dynamic instability of the large-scale shear creates small vortices and subsequently 
induces these vortices to merge, the ultimate result being a single, long-lived coherent 
vortex. (We assume that the large-scale flow is zonal, and that the total flow is therefore 
periodic in the streamwise coordinate.) This process represents a distinct mechanism 
for coherent vortex generation which is considerably more efficient than the upscale 
energy cascade which is observed in isotropic three-dimensional turbulence experiments 
(Smyth & Peltier 1993), and has been suggested as a possible mechanism for the 
formation of large, stable vortices in the atmospheres of the giant planets (e.g. Marcus 
1990). 

Independently of the geophysical perspective, vortex formation in a sheared 
environment may be considered as one of the elemental processes that drive the 
downscale energy cascade in a generic turbulent flow. In this sense, the evolution of a 
free shear layer is a process which occupies a position of fundamental importance in 
fluid dynamics. Over the last few decades, an idealized picture has emerged which 
describes the two-dimensional evolution of temporally-growing homogeneous shear 
layers. (Spatially-growing shear layers evolve in a somewhat different fashion, but the 
essential processes are similar.) Initially, the layer rolls up into a train of discrete 
Kelvin-Helmholtz (KH) vortices whose wavelength is roughly seven times the initial 
depth of the layer. At this point, subharmonic KH instability induces adjacent vortices 
to begin to orbit one another and subsequently merge. The number of vortices is 
thereby reduced by a factor of two, while their scale is increased by a similar factor. As 
a result, the effective depth of the shear layer is doubled, and the advective timescale 
(i.e. the inverse of the overall mean shear), upon which the two-dimensional features 
evolve, is also doubled. This process then repeats, and because of the increase in the 
advection time, each subsequent merging requires about twice as long to complete as 
did its predecessor. As a result of the aforementioned spatial and temporal self- 
similarity, the depth of the shear layer grows linearly with time (e.g. Lesieur et al. 1988; 
Smyth & Peltier 1993), and encompasses progressively fewer and larger vortices. 

The major caveat to general acceptance of the above described heuristic picture of 
free shear-layer evolution is, of course, that real flows are never perfectly two- 
dimensional. It is therefore essential that we assess the significance of whatever three- 
dimensional circulations may develop during and after the formation of large-scale 
vortices. Laboratory experiments with spatially growing shear layers (e.g. Wygnanski 
et al. 1979; Browand & Ho 1983) have revealed that three-dimensional motions 
invariably occur, but that the flow tends to remain roughly two-dimensional on the 
scale of the large vortices. Pierrehumbert & Widnall(l982, hereinafter PW) investigated 
the onset of three-dimensional motions via stability analyses of the Stuart vortex, an 
exact stationary solution of the Euler equations which resembles the KH vortices that 
occur in both numerical simulations and laboratory experiments. They found the 
secondary instability spectrum to consist of transverse subharmonic instabilities which 
lead to vortex merging, helical pairing modes which induce the vortex cores to deform 
into a diamond lattice when viewed from above, and the translative instability, which 
leads to alternating elevations and depressions of the vortex cores. Translative 
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instability, in particular, was found over a broad range of spanwise wavenumbers, and 
was therefore identified in PW as a mechanism capable of injecting energy directly into 
the dissipation scales. Pierrehumbert (1986; see also Bayly 1986) later associated the 
translative modes with a non-scale-selective instability (the elliptical instability) which 
affects any vortex provided that it exhibits non-zero ellipticity. The physical mechanism 
which drives the elliptical instability will be discussed in the present paper. Metcalfe et 
al. (1987) performed fully-three-dimensional numerical simulations of merging KH 
vortices, and found that three-dimensional motions consisted primarily of streamwise 
‘ribs’ of vorticity which developed in the strained region between the large vortices. 
These structures were identified with the ‘ mushroom-shaped’ streamwise vortices 
whose existence had previously been documented in the laboratory experiments of 
Briedenthal(1981), Bernal & Roshko (1986), Lasheras, Cho & Maxworthy (1986) and 
Lasheras & Choi (1988). It was suggested at that time that the translative instability 
could account for the emergence of these circulations. In addition, the three- 
dimensional simulations of Comte, Lesieur & Lamballais (1 992) have revealed 
evidence of the helical pairing mode. Klaassen & Peltier (1991, hereinafter KP) 
performed stability analyses similar to those of PW, with enhanced spatial resolution 
and using numerically evolved KH vortices as background flows as well as Stuart 
vortices. In that study, the stability characteristics pertaining to the case of unstratified 
flow were found to be dominated by a class of modes which were referred to as the 
‘principal spectrum’, and which were identified as the source of the streamwise vortices 
observed in the simulations of Metcalfe et al. and in the laboratory experiments of 
Briedenthal, Bernal & Roshko, Lasheras et al. and Lasheras & Choi. In this paper, we 
will show that the translative mode of PW is in fact a part of the principal spectrum 
of KP. 

The time-dependence of the three-dimensionalization process is clearly of central 
importance. Corcos & Lin (1984), using a semilinear numerical model, and Metcalfe et 
al. (1987), using a fully nonlinear model, observed that the transfer of energy into 
three-dimensional motions was slowed considerably while the large-scale vortices were 
merging. The stability characteristics of the flow during pairing are not accessible to 
standard methods of stability analysis because the two-dimensional flow is strongly 
time-dependent in that phase and therefore does not possess exponentially evolving 
normal modes. In this paper, we shall describe a straightforward extension of classical 
linear stability analysis which removes this difficulty and reveals the manner in which 
three-dimensionalization proceeds during the pairing phase. In addition, we shall 
extend the results of KP and PW regarding the stability of KH vortices prior to 
merging. 

A generalization which is of obvious importance in the geophysical context is the 
inclusion of a background rotation f =  252, where 52 is the angular velocity of the 
reference frame. Constant rotation has no effect on a purely two-dimensional flow, but 
must be accounted for once three-dimensional motions are allowed. The Taylor- 
Proudman theorem (e.g. Greenspan 1968) predicts that sufficiently rapid background 
rotation will act to stabilize the two-dimensional flow against three-dimensional 
perturbations. The theoretical considerations of Lesieur (199 1) and the large-eddy 
simulations of Lesieur, Yanase & MCtais (1991) and Bartello, MCtais & Lesieur (1994) 
suggest that slow rotation in the anticyclonic sense (in which the sign off is opposite 
to that of the relative vorticity of the mixing layer) may destabilize the flow, while 
rotation in the cyclonic sense exerts a stabilizing influence. In this paper, we will 
compute the instability spectra in detail for various values off and thereby provide a 
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full theoretical explanation of the effects that have been observed in these numerical 
simulations. 

In addition to presenting the results of the formal stability analyses, however, we will 
also discuss in some detail the physical processes which drive the growth of three- 
dimensional perturbations. In particular, we shall focus attention on the subtle 
interplay of vortex tilting effects which is responsible for the elliptical instability 
mentioned above. These considerations will enable us to explain the spatial structure 
of the instability, and also to understand why it depends so crucially on the ellipticity 
of the streamlines. Similar mechanistic descriptions will be presented for the instability 
which generates streamwise vortices in the non-rotating case and for the 'edge mode', 
an instability which has been discovered in the course of the present work and which 
exists only in a rotating environment. 

In $2 we briefly describe the nonlinear numerical model that has been developed to 
simulate the growth and pairing of two-dimensional KH vortices on an initially 
parallel shear layer. In this section, details of the linear, non-separable stability theory 
that has been devised to test the stability of these two-dimensional flows against 
arbitrary three-dimensional perturbations will also be presented. The theory fully 
allows for the possibility that the shear layer may develop in a rotating reference frame. 
We then discuss methods via which the perturbation equations may be cast into the 
form of a matrix eigenvalue problem whose solutions reveal the stability characteristics 
of the two-dimensional flow, even when that flow is evolving in time. 

Solutions of the stability problem are presented in $53 and 4. In $3.1, we focus on 
the non-rotating case. We begin by examining the stability of the two-dimensional flow 
at a point in its evolution just prior to the onset of pairing, thereby extending and 
unifying the previous results of PW and KP. We then investigate the competition 
between three-dimensional instabilities and the two-dimensional pairing instability by 
comparing the three-dimensional stability characteristics of the flow before, during and 
after pairing. The influence of diffusion is considered briefly in $3.2, wherein we 
demonstrate that the time-dependence of the background flow may impose a short- 
wave cutoff on the spectrum even in the absence of viscous dissipation. In $4, we 
investigate the effects of rotation, and compare our theoretical results with inferences 
based upon the recently described three-dimensional numerical simulations of Lesieur 
et al. (1991). 

In $ 5 ,  we discuss in detail the vortex stretching and tilting processes which drive 
three-dimensional instability. These considerations enable us to understand, in 
physical terms, several important aspects of the three-dimensionalization process. 
These inferences are validated by means of a quantitative analysis of the perturbation 
enstrophy equation. Section 6 contains a summary and concluding remarks. 

2. Methodology 
In this section, the analytical and numerical methods to be employed to develop and 

evolve a field of nonlinear, two-dimensional vortices, and to test the stability of these 
flows against three-dimensional perturbations will be presented. The two-dimensional 
numerical model that we employ for the nonlinear simulations is adapted from the 
model described in detail by Smyth & Peltier (1991, 1993) in previous studies of 
density-stratified mixing layers. The Navier-Stokes equations for two-dimensional 
incompressible flow are solved in the vorticity-streamfunction form : 
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in which f ( x ,  z ,  t )  and &(x, z ,  t )  are the two-dimensional vorticity and streamfunction 
fields and D is a diffusion operator. Subscripts denote partial derivatives. Note that the 
background rotation fhas no effect on the two-dimensional flow. The initial condition 
consists of a mixing-layer profile of the form f = - sech2 z which is perturbed by small- 
amplitude random noise and by a disturbance whose structure is determined by the 
most unstable linear eigenmode of the parallel shear flow. (While large numbers of KH 
vortices pair in a chaotic manner which is highly sensitive to initial conditions, the 
merging of one pair of vortices is a relatively simple, predictable process. Therefore, the 
precise form of the initial perturbation is not especially important for this two- 
dimensional simulation.) Lengths are scaled by the initial half-depth of the mixing 
layer, and times by the advective timescale. Boundary conditions are periodic in the 
horizontal and free slip in the vertical. 

We employ the Laplacian diffusion operator D = Re-'V2, with the Reynolds 
number, based on half the depth of the shear layer and half the corresponding change 
in horizontal velocity, set at Re = 300. This value for the Reynolds number is typical 
of small-scale flows which occur in nature and in laboratory experiments. It is 
somewhat larger than the values employed in the three-dimensional numerical 
simulations of Metcalfe et al. (1987), Comte et al. (1992) and Lesieur et al. (1991), 
which become Re = 100, 50 and 50, respectively, when expressed in terms of our 
scaling. 

Horizontal derivatives are evaluated in Fourier space, while vertical derivatives are 
computed using second-order centred differences. The advection terms are time- 
stepped using the leapfrog method, while a Crank-Nicholson scheme is employed for 
the diffusion terms. The computational domain is a square with non-dimensional 
length L = 28 on the side chosen so as to accommodate two wavelengths of the 
primary KH instability. To fully resolve the details of the flow, we employ 80 Fourier 
modes in the horizontal and 96 grid points in the vertical. The interested reader should 
consult Smyth & Peltier (1991, 1992) for full details regarding the two-dimensional 
numerical model. 

We turn next to a description of the methods employed in the linear stability analysis 
of the two-dimensional flows that we obtain as solutions to (1). The mathematical 
details of this technique are by now reasonably well known, and have been described 
in detail elsewhere (e.g. Klaassen & Peltier 1985; KP; Smyth & Peltier 1991), and we 
will therefore focus here upon extensions of the technique that are being employed for 
the first time in the present study. The Navier-Stokes equations for three-dimensional, 
incompressible, rotating flow are linearized about a basic state which is independent of 
the spanwise coordinate y ,  and the perturbation is therefore assumed to vary 
sinusoidally in the spanwise direction, i.e. 

in which # is the scalar pressure or any component of the velocity vector, d is the 
spanwise wavenumber and i = 1/ - 1. The flow is defined with respect to a reference 
frame which rotates about the y-axis with angular velocity 51 = iJ At O(c), we obtain 
the following set of coupled, linear p.d.e.s for the fluctuations: 

f = VZJ, (1 b)  

#(x,y, z ,  t )  = &x, z ,  t )  + E&X, z ,  t )  eidu, (2) 

w * 

zit = - U i Z  - Wzi, - Cx 6 - Cz $ + f$ - - f ix  + D6, (3 4 
0, = - UOz - WOz - id@ + DO, (3 b)  
Gt = - U$,- W$z- Wz6- %$-fzi-@,+D$, (3 c) 

0 = 6,+idO+$,, (3 4 

* * 

% * * 

F L M  265 2 
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in which the upper case variables represent the two-dimensional fields determined by 
solving (1). From the geophysical perspective, our choice of coordinates is somewhat 
non-standard: iffrepresents the Earth’s rotation, then our x-, y- and z-axes denote the 
zonal, vertical downward and meridional directions, respectively. These coordinates 
have been chosen for consistency with previously reported experimental and theoretical 
investigations of non-rotating shear layers (e.g. Orszag & Patera 1983; Corcos & Lin 
1984; Bayly, Orszag & Herbert 1988). Equation (3) may be combined to form a single 
diagnostic equation for the pressure : 

Vjj =f(,,-zi,)-2(C,zi,+Cz,,+ r@$,+ F@,), (4) 

which replaces (3 d). The perturbation is assumed to exhibit the same periodicity in x 
as does the basic state. (Note that pairing instabilities are accessible to our analyses, at 
least initially, since the basic state contains two wavelengths of the primary instability. 
The behaviour of disturbances whose wavelengths exceed twice that of the primary 
Kelvin-Helmholtz wave is beyond the scope of the present paper.) 

Boundary conditions in the meridional direction at z = 0, H are: 
” ”  u = z ,  =,=jj,=o. 
2 2  

The x- and z-dependence of the problem may be represented spectrally by defining the 
following basis functions, which are selected so that the boundary conditions on the 
dependent variables will be satisfied automatically : 

cos D,z, G,, = eiAas sinD,z, D, = vn/H. p = eiAax 
A, 

In terms of these basis functions we may then write (employing the usual summation 
convection) : 

Applying the Galerkin formalism, we may then reduce system (3) to a set of linear 
0.d.e.s for which time is the independent variable. The pressure is eliminated using (4). 
The spanwise momentum equation (3c) decouples from the system, but will be 
employed later as a consistency check. The remaining equations, (3a) and (3b), may 
then be written in the following matrix form 

The coefficient submatrices that appear in (5)  are given by 
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The inner product which appears in (6) is defined by 

Note that if the solutions of interest had appreciable amplitude near the boundaries, 
the boundary conditions @, = 0 would be replaced byi,  = - fii, to take proper account 
of the Coriolis force. In that instance, when f is non-zero, the pressure perturbation is 
expanded in terms of the G,, rather than the I$,, and the coefficients given in (6) take 
a slightly different form. In the present case, however, the eigenfunctions are localized 
far from the boundaries, so there is no appreciable difference between results obtained 
using cz = 0 and those obtained using @, = - fii. For that reason, we employ (6) for 
both the rotating and non-rotating cases. 

Note also that we have not assumed exponential time dependence, as has been done 
in previous studies of this kind, but rather we have left the form of the time dependence 
unspecified. We truncate the series expansions in accordance with the triangular 
scheme 214 + v < Nt (cf. KP), and concatenate the coefficients so as to convert ( 5 )  into 
a standard matrix differential equation: 

- _  - A(t) V .  
do 
dt (7) 

A(t) in (7) is an N x  N full complex matrix whose time-dependence reflects the time- 
dependence of the two-dimensional background flow. The dimension N depends upon 
the degree of resolution employed in the spatial discretization process, and is equal to 
Nf + Nt + 1 .  In the current calculations, N is typically of order lo3. 

If we were to employ the standard approach to such analyses, we would proceed by 
ignoring the time-dependence of A (or, equivalently, assume exponential time 
dependence in the solution) and thereby write (7) in the form of a conventional matrix 
eigenvalue problem, namely : 

vv = A(to) V ,  (8) 

in which the eigenvalue cr represents an exponential growth rate. The matrix A would 
then be evaluated at any instant to during the evolution of the two-dimensional flow, 
and its eigenvalues and eigenvectors computed using standard numerical methods. If 
a particular unstable mode that was of interest had a growth rate that was far in excess 
of some measure of the rate at which the background flow evolves in time, then we 
would argue that the neglect of the time-dependence of A was justified aposteriori. This 

2-2 
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FIGURE 1. Vorticity fields for a two-dimensional, hyperbolic-tangent shear layer in a domain chosen 
so as to accommodate two wavelengths of the primary Kelvin-Helmholtz instability. Laplacian 
viscosity is employed, with Re = 300. 

multiple-timescale approach has proved to be valid in the study of various slowly- 
varying flows (e.g. Smyth & Peltier 1991; KP). In the present case, however, the 
timescale separation argument becomes invalid during the merging phase owing to the 
rapid evolution of the background flow (e.g. figure 1). As a result, conclusions based 
on a normal mode stability analysis are likely to be misleading. 

An alternative approach is simply to solve the linearized equations (7) directly as an 
initial-value problem (e.g. Corcos & Lin 1984; Smyth & Peltier 1990). While this 
approach does not depend for its validity on a separation of timescales, it is less 
revealing than the normal mode stability analysis in the sense that the results of a given 
computation pertain only to the particular initial condition selected. Since three- 
dimensional flows tend to be sensitively dependent on initial conditions, it is difficult 
to draw any general conclusions about the evolution of a generic perturbation. In 
contrast, the normal mode spectrum identifies the structures which are most likely to 
be observed, and requires only very weak constraints on the initial conditions (i.e. the 
initial noise field must have a non-zero projection onto a given unstable eigenmode in 
order for that mode to grow). In what follows, we shall describe a third approach which 
combines the advantages of both of the methods mentioned above. 

The general solution to (7) is clearly: 

o(t) = exp( [A(t’)dt’)u(O). (9) 

Defining the time-averaged stability matrix (TASM) corresponding to some time 
interval t ,  6 t d t ,  as 

where T = t,- t,, we may write o, = o(tJ in terms of u1 = o(tl)  as: 



Three-dimensionalization of barotropic vortices 33 

To proceed, we define the eigenvalues (a,) and eigenvectors (e,) of the TASM through 

the equation : - 

Ae,  = c,en (12) 

and write v1 as the following linear combination of the en: 

v,  = C Cne,. 

The solution at time t ,  may then be re-written as 

n 

v,  = Cexp(an7) Cne,. 
n 

In particular, if v ,  is one of the eigenvectors of A (i.e. if C, = Snj for somej) then v,  is 
proportional to v1 with an amplification factor exp (aj 7). The new method requires that 
we compute A(t )  from the background two-dimensional flow at several points within 
the time interval of interest and accumulate a weighted sum which will approximate the 
integral in (14). In the current application, we have employed a weighted sum which 
corresponds to integration using the trapezoidal rule. We then carry out the eigenvalue 
analysis of the resulting TASM in the usual manner. In computing the TASM, we have 
found that evaluations of A(t )  do not have to be performed at especially small intervals 
in time for the results to be well converged, and the method is therefore not 
significantly more expensive than a standard normal mode analysis. For future 
reference, we note that the stability matrix A is a linear function of the background 
velocity fields. The method described above for computing the TASM is therefore 
equivalent to averaging the background fields over the time interval [ t l ,  t?] and then 
computing A(t )  by substituting the averaged fields into (6). If one of the eigenvectors 
of the TASM has a growth rate far in excess of all others, we may reasonably expect 
that that mode will dominate the solution o, for a broad class of initial conditions v, .  
However, the validity of this assumption must be checked. Because the time interval 
7 is finite, and because the eigenvectors are not, in general, orthogonal, the maximally 
amplified disturbance will not necessarily be the dominant eigenmode but rather will 
be some linear combination of all of the eigenvectors. It is therefore necessary to 
compute this disturbance explicitly. Farrell (1989) has developed a simple method for 
identifying the maximally amplified disturbance in such a situation, and his method is 
readily adapted to the present problem. 

Briefly, we define the initial and final energies 

El = u 2 - v l  = C Cze2-e,C,  = 

Ez = v,* v2 = C C: BE; C,, 

C:B:’,C,, B:’, = ez-e,, 
m ,  n m, n 

BgL = exp ((a2 + a,) 7) B:;, 
m ,  n 

in which asterisks denote complex conjugates. For this particular application of 
Farrell’s technique, the energy norm E is just the perturbation kinetic energy. We now 
seek values for the C, such that E, is an extremum subject to the constraint (without 
loss of generality) that El = 1, and obtain: 

(15) 
a 

-[E,+h(l-E,)] = C B ~ ’ , C , - A C B ~ ; C ,  = o ,  
aC: m m 
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h being the Lagrange multiplier. Note that differentiation with respect to C, rather 
than ClT, in (1 5) simply yields the complex conjugate of the stated result, since both B(l) 
and B(2) are Hermitian. This property of B(l) and B(') also guarantees that h will be real 
and positive. The second equality in (15) constitutes a generalized eigenvalue problem 
for the C, which may be solved using standard numerical methods. The final energy 
E, is now given by 

E, = C Ck B$h C, = h Ck B:h C, = hE, 
m,  12 m, 12 

The coefficients for the maximally amplified disturbance are therefore the elements of 
the dominant eigenvector obtained from (1 5). The optimization technique just 
described is computationally expensive, and we therefore employ it only occasionally 
to ensure that results obtained from the eigenanalysis of the TASM are not misleading. 

In order to eliminate spurious modes which arise in consequence of the spatial 
discretization, we require that each accepted mode satisfy the perturbation enstrophy 
budget (cf. $5) to within a tolerance of 2%. We have found that this procedure 
eliminates spurious modes while retaining those which are physically relevant. 
Additional consistency checks are performed using the spanwise momentum equation 
(3 b) and the perturbation kinetic energy equation. 

Our choice of flow diagnostics in the analyses to follow is governed by the desire to 
understand the characteristics of the unstable modes in detail while still covering a 
large region of parameter space in an efficient manner. Therefore, we shall calculate at 
each phase of flow evolution the growth rates of the dominant modes as functions of 
the spanwise wavenumber d and also perturbation kinetic energy, spanwise velocity 
and spanwise vorticity fields corresponding to modes which are of particular interest. 
An additional diagnostic that has proved extremely useful in enhancing understanding 
of the physical mechanism of three-dimensional instability is the above-mentioned 
perturbation enstrophy budget. This diagnostic will be described fully in $ 5. 

3. The non-rotating case 
In this section, we shall discuss the stability characteristics of a two-dimensional 

shear layer for the special case f = 0. In $ 3.1, we focus upon the flow described in 92, 
which evolves under the action of Laplacian diffusion with Re = 300. We investigate 
the susceptibility of the flow to three-dimensional perturbations before, during and 
after the KH vortices merge. In $3.2, we replace the Laplacian diffusion with a high- 
order hyperviscous operator, thereby rendering the model effectively inviscid, and 
briefly investigate the effect that this has on the short-wave cutoff exhibited by the 
instability spectrum. 

3.1. Ncn-rotating, viscous flow 
In figure 1, we display contour diagrams of the vorticity field computed at the non- 
dimensional times t = 20,40,60, . . . , 160, from the two-dimensional simulation with 
Re = 300. The primary KH instability grows rapidly, and the subharmonic becomes 
visible at t = 60. From t = 60 to t = 100, vortex merging and the accompanying 
filamentation (e.g. Melander, Zabusky & McWilliams 1988) are clearly visible. At 
t = 100, we observe a single vortex structure within which the remnants of the primary 
vortices remain visible. These features subsequently diffuse, leaving behind a single 
elliptical vortex. This feature is, of course, one member of a periodic train of quasi- 
isolated vortices which are prevented from further merging by the boundary conditions. 
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The time-evolution of the vortex state during this phase consists of slow viscous 
diffusion plus a slight nutation due to the influence of the neighbouring vortices. We 
terminate the simulation at this point because a second pairing would by now be 
underway if the boundary conditions permitted it. 

We turn now to the analysis of the stability of the evolving two-dimensional KH 
wavetrain shown in figure 1 to small-amplitude, three-dimensional perturbations. 
Because our experiments are performed on a computational domain which contains 
two wavelengths of the primary KH wave, the secondary stability analyses deliver 
unstable modes whose streamwise wavelength is the same as the primary wave 
(longitudinal instabilities) and also those whose wavelength is double that of the 
primary wave (subharmonic instabilities). We will find it convenient to denote these 
instabilities by the symbols {Ln,n = 1,2, ...} and {S,,n = 0,1,2,. ..}, respectively. In 
previous studies (PW; Klaassen & Peltier 1989; Smyth & Peltier 1993), the latter class 
of modes was computed separately using Floquet theory. The disadvantage of the 
present approach is that the enlarged spatial domain is more difficult to resolve using 
finite computational resources. Resolution tests have shown that setting Nt = 37 is 
more than sufficient to obtain convergence in the secondary stability analysis at t = 40, 
and we have used this value in all of the calculations pertaining to that case. At later 
times in the evolution of the KH wavetrain, the eigenfunctions exhibit decreased levels 
of small-scale structure and are therefore more easily resolved. For those cases, we set 
Nt = 31. 

In what follows, we shall find it useful to distinguish three time intervals: respectively 
the pre-pairing, pairing, and post-pairing phases. From t = 30 to t = 50, the KH wave 
pair evolves relatively slowly. During this time, the subharmonic is adjusting its phase 
relationship with the primary KH wavetrain in order that it may grow and cause the 
primary vortices to merge (Klaassen & Peltier 1989; Smyth & Peltier 1993). During this 
time, the unstable modes have relatively large growth rates, and timescale separation 
may therefore be invoked in order to justify ‘freezing’ the flow at a particular point in 
time and analysing its stability as though it were a steady state (cf. (8) and the 
accompanying discussion). The stability characteristics of the KH wavetrain at this 
point in its evolution have been discussed previously by KP, although only the 
longitudinal modes (and the influence of stable stratification upon them) were 
considered in that study. While it would be logical to base the stability analysis on a 
calculation of the eigenmodes of the TASM (see $2) defined on, say, the time interval 
30 < t < 50, we perform the analysis instantaneously at to = 40 in order that we may 
readily compare our results with those obtained previously by KP. This approach is 
justifiable in the light of the slow evolution of the KH wavetrain prior to pairing. The 
remaining quantitative differences between KP’s results and ours are due to the fact 
that our background flow at t = 40 does not correspond exactly to the maximum- 
amplitude state whose stability was analysed in the former study. 

The pairing phase will be defined as the time interval between t ,  = 60 and t ,  = 100. 
During this phase, the flow evolves rapidly and the stability analysis is therefore 
performed using the new ‘TASM ’ method described in the previous section. We define 
the post-pairing phase as extending from t ,  = 100 to t ,  = 140. Although the 
background flow evolves much more slowly in the post-pairing phase than in the 
pairing phase, we shall again employ the TASM method in performing the stability 
analyses. Direct comparisons between instantaneous stability analyses and those 
performed using the TASM method will be presented in 53.2 in the context of a 
discussion of viscous effects. 

In figure 2, we plot the growth rates of the five most unstable modes of the KH 
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FIGURE 2.  Instantaneous secondary instability spectrum for the non-rotating Kelvin-Helmholtz 
wavetrain at t = 40 (just prior to pairing). -, longitudinal modes; ---, subharmonic modes. x , 
modes whose spatial structures are to be displayed in figures 3 and 4. 

vortex, analysed at t = 40, as a function of the spanwise wavenumber d. Solid (dashed) 
curves represent longitudinal (subharmonic) modes. The leftmost dashed curve 
represents the well-known pairing instability, which we shall denote by the symbol So. 
The pairing mode has been described in detail by PW (using the Stuart vortex as a 
background flow) and by Klaassen & Peltier (1989) and Smyth & Peltier (1993) (using 
numerically-evolved KH wave states and also investigating the effects of stable 
stratification), and we will therefore not discuss it in detail in the present paper. The 
helical pairing instability, as this was defined by PW, is just the extension of the 
transverse (d = 0) pairing mode to non-zero (but small) spanwise wavenumbers. The 
second dashed curve in figure 2 represents mode S,, a subharmonic instability similar 
to the helical pairing mode, whose existence has not previously been noted. The S,  
mode is more helical than the So mode, and exhibits a growth rate which is only slightly 
smaller. The S,  mode is a second new subharmonic mode; its properties will be 
discussed below. The uppermost solid curve in figure 2 corresponds to the longitudinal 
mode L,, which is the dominant mode of KP’s principal spectrum. This mode is 
denoted wo in KP’s nomenclature and is identified by a diamond symbol in their figure 
13. The remaining solid curve represents a second longitudinal mode, denoted L,, 
which was identified by KP as PW’s translative mode. The modes whose growth rates 
are shown in figure 2 are all stationary (i.e. their growth rates are purely real), and 
comprise the entire set of modes whose growth rates exceed 0.10 for some value of d 
at this particular point in the flow evolution. 

Throughout this investigation, we have found (as did KP) that unstable modes tend 
to occur in harmonic sequences. Such a sequence consists of a set of modes with 
oscillation frequencies rin % mil; n = 0,1,2, . . . , where ril is the fundamental 
frequency. The growth rate vr generally decreases with increasing n, so that the 
stationary mode with n = 0 is the most unstable. While vr is usually a strong function 
of spanwise wavenumber, as is illustrated in figure 2, vi tends to vary very little over 
large ranges of d. In view of these observations, we shall focus our attention on the 
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FIGURE 3. Perturbation kinetic energy K’, spanwise velocity v’ and spanwise vorticity v‘ fields for 
the three most unstable modes of the wavetrain at t = 40 with d = 0.8, f = 0. 

n = 0 modes, occasionally noting the fundamental frequencies ril of the associated 
harmonic sequences. 

In figures 3 and 4, we display the spatial structures of the most unstable modes at 
d = 0.8 and d = 1.5, respectively, as revealed by the kinetic energy K’, the spanwise 
velocity 0’ and the spanwise vorticity 7’ associated with each mode. The perturbation 
kinetic energy is quadratic in the disturbance fields and is therefore averaged over a 
single spanwise wavelength to give a positive, real function of x and z.  The spanwise 
velocity and vorticity perturbations vary sinusoidally with y ,  and each of these 
diagrams shows the corresponding field evaluated on a plane of constant y which has 
been chosen to coincide roughly with the antinode of the y-dependent oscillation. The 
modes shown in figure 3 are all core-centred, i.e. the K’ fields are largest near the cores 
of the primary KH vortices. The L, mode at d = 0.8, shown in figure 3(a), clearly 
corresponds to PW’s translative instability : the 7’ field describes a translation of each 
KH vortex upward and to the right (or to the northeast, in the geophysical context). 



38 W. 

K‘ 

0 

D. Smyth and W. R. Peltier 

V‘I n ’ 
I I 

FIGURE 4. Perturbation kinetic energy K ,  spanwise velocity v’ and spanwise vorticity v‘ fields for 
the two most unstable modes of the wavetrain at t = 40 with d = 1.5, f = 0. 

The S,  mode (figure 3 b) exhibits approximate antisymmetry about the stagnation 
points which lie between the KH vortices. As a result, the translations of adjacent 
vortex cores are 180” out of phase, and the result is a helical pairing motion similar to 
that described by PW. Note that, unlike PWs helical pairing mode, this mode is not 
contiguous with any mode which exists in the limit d-+O. The new mode is most 
unstable at d = 0.8, which corresponds to a spanwise wavelength slightly greater than 
half the wavelength of the primary KH wavetrain. This mode therefore acts to promote 
the formation of a diamond pattern of interlocking vortex tubes whose aspect ratio is 
of order unity (see figure 6 of PW). The L, mode (figure 3c) again corresponds to 
translative instability. It differs from the mode shown in figure 3 (a) only in its smaller 
growth rate and in the fact that it is somewhat more strongly core-centred. 

Pierrehumbert (1986; see also Bayly 1986) has shown that any region in which the 
streamlines of the background flow are approximately elliptical (and the vorticity is 
approximately constant) will support a three-dimensional instability that has come to 
be known as elliptical instability. It is of interest to compare the characteristics of the 
core modes discovered here (i.e. L,, S, and L,) with those predicted on the basis of 
Pierrehumbert’s idealized model. Comparison of the perturbation spanwise vorticity 
fields displayed in figure 3 with those shown in figure 2 of Pierrehumbert (1986) reveals 
that the spatial structure of our core modes is very consistent with the structure 
predicted for elliptical instability. Quantitative comparison of growth rates is difficult 
to perform with precision, because the growth rate of the elliptical instability scales 
with the value chosen for the ‘constant’ vorticity of the core, which in real situations 
must be some arbitrarily defined average value. In addition, since our streamlines are 
not perfect ellipses, the value chosen for the ‘ellipticity’ of the core is also somewhat 
arbitrary. Taking the ellipticity of our vortex core to be 0.25 and the characteristic non- 
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dimensional vorticity in the core to be 0.8, we predict using Pierrehumbert’s results a 
growth rate g = 0.08. Our core modes exhibit growth rates ranging from zero to about 
0.13. This level of agreement is satisfactory given the approximations made, and we 
conclude that all of the core modes are essentially manifestations of elliptical 
instability. This conclusion will be supported further in $5.1, where we will elucidate 
the physical mechanism of elliptical instability, and show that the core modes 
encountered here grow as a consequence of that mechanism. 

In figure 4, we display the spatial dependences of the two most unstable modes at 
spanwise wavenumber d = 1.5. This is the value of d at which the most unstable three- 
dimensional mode (L,) is found. This mode, shown in figure 4(a), is concentrated in the 
strained regions, or braids, located between the KH vortex cores, and clearly 
corresponds in terms of its spatial morphology to the dominant mode of KF”s principal 
spectrum. Inspection of the spanwise velocity diagram reveals that this mode promotes 
the formation of counter-rotating vortex tubes whose axes are aligned roughly 
perpendicular to the axes of the primary KH vortices. It is therefore clear, as was 
proposed by KP, that this mode is responsible for the rib structures which have been 
observed in the laboratory experiments of Breidenthal(1981), Bernal & Roshko (1986), 
Lasheras et al. (1986) and Lasheras & Choi (1988), and in the numerical simulations 
of Metcalfe et al. (1987). It now seems clear that the distinction between this mode and 
PW’s translative mode may be misleading, since the two modes are contiguous 
members of the L, branch. Upon inspection of figure 2, the reader will note that the 
r ( d )  curve corresponding to the dominant longitudinal mode L, exhibits a slight kink 
near d = 0.9. Detailed analyses have revealed that the spatial form of the L, mode 
changes rather abruptly at this point, from the core-centred structure in figure 3 (a) to 
the brain-centred disturbance shown in figure 4(a). We note that remnants of the core- 
centred structure are visible in the 7 field in figure 4(a). KP investigated the spatial 
structure of each mode only for the spanwise wavenumber d at which the growth rate 
is a maximum. In consequence, the correspondence at d < 0.9 between the L, mode 
and the translative instability is not evident in KP’s results. 

The S,  mode (figure 4 b) is again concentrated on the braids of the KH vortices. Like 
the L, mode, it tends to produce vortex tubes aligned perpendicular to the large 
vortices, but in this case the secondary vortex tubes found at the same spanwise 
location on adjacent KH vortices rotate in opposite directions. Unlike the L, mode, the 
S,  mode is not contiguous with its low-wavenumber counterpart, the helical pairing 
mode S,, but the relationship between the spatial structures is clearly similar. 

Having established the stability characteristics of the KH wavetrain in the pre- 
pairing phase, we now turn our attention to the pairing phase, which extends from 
t = 60 to t = 100. We have performed instantaneous stability analyses at numerous 
times within this interval, and have found that the growth rates of the secondary 
instabilities are much smaller than those which obtain prior to pairing. At t = 60, at 
which point the adjacent KH vortices are just beginning to orbit each other (cf. figure 
l), the instabilities illustrated in figures 2-4 are still easily identified, but by t = 70 those 
modes have been almost entirely stabilized, and are replaced by a qualitatively different 
set of modes whose growth rates are smaller by roughly a factor of two. These new 
modes correspond to the longitudinal modes of the emerging subharmonic KH vortex, 
as we shall show. Because the normal modes grow relatively slowly during pairing, and 
because the background flow evolves quickly, the results of the instantaneous stability 
analyses are of dubious validity. The e-folding time of a typical unstable mode during 
this phase is At = 16, during which time the structure of the background flow is 
substantially altered (cf. figure 1). It is in response to this problem that we have 
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FIGURE 5 .  Instability spectrum for the non-rotating Kelvin-Helmholtz wavetrain during the 
pairing phase 60 < d < 100. 

developed the more rigorous TASM method of stability analysis described in 92, which 
we now employ. The stability matrix A(t) is obtained using previously-calculated two- 
dimensional flow fields at times t = 60,65,70, . . . ,100, and summed in the appropriate 
fashion to form the TASM. 

Figure 5 shows the growth rate spectra of all modes for which cr(d) exceeds 0.05 for 
some d. These spectra are determined by the eigenvalues of the TASM averaged over 
the time interval 60 < t < 100. The maximum growth rate observed is 0.064, roughly 
half the maximum growth rate which obtains in the pre-pairing phase. In figure 6, we 
display the eigenfunctions of the two most unstable modes at d = 1. Comparison with 
figures 3 and 4 reveals that these modes are just the longitudinal modes identified 
previously, but they are now properties of the subharmonic KH vortex (cf. figure 1) as 
opposed to the primary vortices. The most unstable mode shown in figure 5 is core- 
centred at small d and braid-centred at large d, and we therefore identify it as the 
longitudinal mode L,. The two weaker modes are core-centred, and we identify them 
as L, and L,, as indicated on figure 5. 

As was noted in $2, the TASM describes disturbance evolution over a finite time 
interval, and its eigenmodes are in general not orthogonal. Therefore, there is no a 
priori justification for restricting our attention to the eigenmodes of the TASM as we 
search for the disturbance which amplifies optimally over the time interval 60 < t < 100, 
and the identification of that disturbance with the most unstable eigenmode (cf. figure 
6) may be misleading. To test this possibility, we have taken d = 1 as the most probable 
value for the spanwise wavenumber of the optimally amplified disturbance (cf. figure 
5) ,  and computed that disturbance explicitly using the ' optimal instability' method 
described in $2. The result is displayed in figure 7. Figures 7(a) and 7(b) show the 
spatial structure of the optimally-growing disturbance at t = 60 and t = 100, 
respectively. Between these times, the perturbation kinetic energy K' increases by a 
factor of 346, which corresponds to an average exponential growth rate (T = 0.0731. 
This value is indeed substantially in excess of the growth rate of the most unstable 
eigenmode, which is n = 0.0645 and which leads to an energy amplification factor of 
174. 
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FIGURE 6. Perturbation kinetic energy K‘,  spanwise velocity u’ and spanwise vorticity 7’ fields for the 
two most unstable modes of the Kelvin-Helmholtz wavetrain during the pairing phase, with d = 1.0, 
f =  0. 
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FIGURE 7. Perturbation kinetic energy K’, spanwise velocity u’ and spanwise vorticity 7‘ fields for the 
disturbance which amplifies maximally during the pairing phase, shown (a)  at t = 60, (b) at t = 100. 
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FIGURE 8. Instability spectrum for the non-rotating Kelvin-Helmholtz wavetrain during the 
post-pairing phase 100 < d < 140. 

The optimal disturbance, shown in figure 7(a), exhibits a preponderance of small- 
scale structure (this is a common property of optimally amplified disturbances; see 
Farrell 1989 for examples). This makes spatial resolution a problem, and it is clear that 
the structure shown in figure 7 (a) is not particularly well resolved. Unfortunately, this 
computation requires twice as much core memory as does the eigenvalue analysis of 
the TASM, and the truncation level Nt = 3 1 is therefore the largest value accessible to 
us at present. However, test calculations performed using Nt = 19, 23, 27 and 31 have 
shown that both the amplification factor and the structure of the K’ field are well 
converged at Nt = 31, and that the qualitative features of the u’ and 7’ fields are 
consistent over this range of truncation levels. It therefore appears that the use of finer 
spatial resolution would not alter the results significantly. The K’ and u’ fields are 
strongest at the core of the subharmonic KH vortex, while the spanwise vorticity 
perturbation 7’ is maximized on the edges of the vortex. The final form of the 
disturbance, shown in figure 7 (b), is markedly different from the initial form, indicating 
that this disturbance contains a mixture of components proportional to different 
eigenmodes of the TASM. However, the final form is very similar to the most unstable 
eigenmode (cf. figure 6a) .  The optimally amplified disturbance is strongly braid- 
centred at the completion of pairing, and has clearly developed into the rib-like 
structures which have been observed in the experimental and numerical investigations 
cited above. We conclude that the results of the eigenanalysis of the TASM yields 
accurate information, at least in the present application, regarding the most probable 
evolution of small-amplitude disturbances on this strongly time-dependent background 
flow. 

We conclude this section by examining the three-dimensional secondary instabilities 
of the two-dimensional KH wavetrain in the post-pairing phase, i.e. in the time interval 
100 d t d 140. The growth rates of the dominant eigenmodes of the TASM are shown 
in figure 8. Comparison of this result with that illustrated in figure 5 reveals that the 
post-pairing spectrum is very similar to that obtained during the pairing phase. The 
spatial structure of the dominant eigenmode will be described in detail in the following 
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section (cf. figure 14b); for the present we note that the eigenmode is also nearly 
identical to the dominant mode found during the pairing phase. We therefore conclude 
that the stability characteristics of the pairing phase are already dominated by the 
spectrum associated with the emerging subharmonic vortex. 

The axes on figure 8, as well as those on figure 5 ,  have been deliberately rescaled by 
a factor of with respect to figure 2, so that the reader may easily compare the growth 
rates of the longitudinal modes of the paired vortex state, and the spanwise lengthscales 
at which they occur, with corresponding quantities which obtain for the primary KH 
vortices prior to pairing. Such a comparison reveals that there is a strong degree of self- 
similarity in the spectra of the pre-pairing and post-pairing states. The self-similarity 
of the two-dimensional pairing process is manifested in the fact that the depth of a 
mixing layer grows linearly in time (Lesieur et al. 1988; Smyth & Peltier 1993), or in 
space in the case of a spatially-growing layer (e.g. Brown & Roshko 1974). One may 
speculate that, to the degree that three-dimensional perturbations evolve, like the 
pairing process, on the advective timescale which is established by the large-scale shear, 
their linear growth rates and spanwise wavenumbers should exhibit the same temporal 
and spatial self-similarity. The present results provide substantial confirmation of this 
hypo thesis. 

The most obvious departure from self-similarity is found in the spanwise lengthscale 
of the most unstable three-dimensional mode. The growth rate is a maximum at 
d = 1.5 prior to pairing and at d = 1.0 after pairing. There are two reasons for this 
discrepancy. Firstly, the stabilization of small-scale modes is controlled largely by 
viscous processes, rather than by the advective dynamics of the two-dimensional 
vorticity distribution, and it therefore obeys different scaling laws. Secondly, note that 
the pre-pairing phase was analysed instantaneously at t = 40 (for comparison with 
KP), whereas the stability characteristics of the post-pairing phase were computed 
using the TASM (despite the fact that the background flow evolves on a slow timescale 
during that phase). The influence of viscosity and of time-dependence in the 
background flow will be discussed in the following subsection. 

3.2. The effects of diffusion 
In several previous investigations of secondary instabilities (PW; Orszag & Patera 
1983; Pierrehumbert 1986; Smyth & Peltier 1991), it has been observed that growth 
rates of secondary instabilities may increase monotonically with increasing spanwise 
wavenumber. The extent of this monotonic increase, which we refer to as an 
'ultraviolet catastrophe', is limited only by the viscosity-imposed short-wave cutoff, 
and the phenomenon is therefore interpreted as a direct transfer of energy into the 
viscous subrange. These observations have important implications for our under- 
standing of turbulent dynamics (e.g. Pierrehumbert 1986). 

An example of this ultraviolet catastrophe is provided by the solid curve in figure 9. 
To compute this result, we first re-created the two-dimensional simulation previously 
illustrated in figure 1, this time replacing the Laplacian viscosity operator in (1 a) with 
a hyperviscous operator of the form D = R-lV'. The constant R was set to the value 
1.5 x lo'. The resulting two-dimensional evolution (which we shall not illustrate here) 
is qualitatively very similar to that shown in figure 1, except that the end state vortex 
exhibits in profile a somewhat flatter core, and the filaments of strong spanwise 
vorticity which are formed during pairing persist for much longer than they do in the 
viscous case (as do the small-scale features within the core of the end-state vortex). We 
then performed a three-dimensional stability analysis instantaneously at t = 120 (see 
figure 1 for an approximate picture of the flow at this point), making the appropriate 
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FIGURE 9. Growth rate versus spanwise wavenumber for the post-pairing case, computed using 
hyperviscosity. Curves correspond to the L, mode. Stability analyses are performed -, 
instantaneously at t = 120 and ---, over the time interval 100 < t < 140 using the TASM method. 

modifications to the viscous terms in (6). The dominant instability is, as usual, the L, 
mode, whose energy is focused in the core for small d, in the braids for large d. As is 
clear upon inspection of the solid curve in figure 9, the effective removal of viscosity 
from the model allows the growth rate of the dominant L, mode to increase 
monotonically with increasing d. Further calculations, performed using spanwise 
wavenumbers up to d = 10, have shown that the growth rate continues to increase, 
asymptoting to a limiting value slightly in excess of 0.08. (It must be noted that our 
spatial resolution is questionable for these very large values of d. However, there is an 
apparently-universal tendency for large-d modes to appear more unstable as resolution 
is increased, so we expect that calculations performed using higher resolution would, 
if anything, show an even greater tendency for CT to increase with d.) This behaviour 
might be taken to suggest that the L, mode is capable of transferring energy into a 
broad range of spanwise lengthscales which extends to the dissipation scale. 

Given the slowness of the fluctuations in the two-dimensional flow at this point in 
its evolution, one would expect that the instantaneous stability analysis described 
above would be justified in terms of timescale separation, and that its results would 
accurately reflect the stability characteristics of the flow during the post-pairing phase. 
As a check on this assumption, we repeated the stability analysis of the post-pairing 
phase using the TASM method and averaging the background flow over the time 
interval 100 6 t 6 140, as was done in $$3 and 4. The corresponding result is shown by 
the dashed curve in figure 9. There is little difference between the two curves at low d, 
but we now observe a distinct short-wave cutoff at high d. Calculations like those jyst 
described have also been performed for the pre-pairing phase, and the results have been 
the same: the ultraviolet catastrophe is no longer observed when the time-dependence 
of the background flow is accounted for using the TASM method, even though the 
model is effectively inviscid. 

We therefore conclude that even a slow time dependence in the two-dimensional 
background flow may act to decorrelate small-scale modes, and may therefore impose 
a short-wave cutoff independently of the action of viscosity. In other words, the direct 
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transfer of energy to arbitrarily small scales of motion may be possible only when the 
background flow is precisely in equilibrium. 

4. The rotating case 

We turn now to an investigation of the effect of rotation on the stability 
characteristics of the two-dimensional flow. As in § 3.1, we assume Laplacian diffusion 
with Re = 300. The rotation has angular frequency SZ = ih f being the associated 
vorticity. The rotation vector points in the y-direction, so that the background vorticity 
represented byfis  aligned with the vorticity field of the two-dimensional flow. The 
Taylor-Proudman theorem (e.g. Greenspan 1968), stated loosely, suggests that 
rotating flows will tend to be two-dimensional, or (in the language of the present paper) 
that rotating two-dimensional flows tend to be stable against three-dimensional 
disturbances, provided that the ambient rotation is sufficiently rapid. In the present 
case, any three-dimensional circulations that may evolve, particularly those which are 
concentrated near the vortex cores, develop in a flow that is strongly rotational even 
i f f=  0. Whenfis positive, the rotation of the reference frame adds vorticity that has 
the same sign as the relative vorticity +(x, z) ,  and therefore the three-dimensional 
motion will be subject to the influence of effectively enhanced rotation. In consequence 
of this, we expect positive ambient rotation to have a stabilizing effect. However, when 
f i s  negative, the shear layer is located in a reference frame which is rotating in a sense 
that is opposite to its own relative vorticity, which means that the absolute vorticity 
f +  +(x, z )  is closer to zero than is the relative vorticity +(x, z).  We might therefore 
expect that small negative values offwill tend to render the flow less stable against 
three-dimensional fluctuations. Lesieur 91991, 9 3.3.1) has further suggested that 
regions of the two-dimensional flow in which + + f  is close to zero should be more 
susceptible to three-dimensional instability than regions in which f +fis far from zero. 
In what follows, it will be seen that the results of our stability analyses not only provide 
strong support for these qualitative ideas, but also demonstrate that a new and 
particularly dangerous mode of three - dimensional destabilization dominates in the 
region of small negative$ 

The detailed stability analysis for the case of rotating flow may be performed using 
the same two-dimensional simulations that were employed in the non-rotating cases, 
sincefhas no effect on a two-dimensional flow. We will not display results pertaining 
to the pre-pairing, pairing and post-pairing phases separately, but will rather focus 
upon the post-pairing phase. There will be no significant loss of generality because of 
this, since the relationships among the instability spectra which obtain during the 
different time intervals is simple and has been described in detail in the previous 
section. Explicit studies of the pre-pairing phase, in which two KH vortices are present, 
have shown that modes tend to appear in pairs with nearly equal growth rates. In each 
pair, one mode is concentrated near each of the two KH vortices. As a result, each 
mode may occur with equal probability in longitudinal form, in subharmonic form, or 
in any combination of the two. By focusing on the post-pairing phase, in which only 
one KH vortex is present, we avoid the unnecessary complication of dealing 
simultaneously with longitudinal and subharmonic modes. Note, however, that the 
assumption that the flow remains essentially two-dimensional at large scales may be 
less defensible in the rotating case than in the non-rotating case. Johnson (1963) and 
Yanase et al. (1993) have shown that a rotating shear layer exhibits three-dimensional 
primary instabilities whose growth rates exceed that of the primary KH instability. 
Nevertheless, we assume that a vortex in a rotating reference frame may evolve to finite 
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FIGURE 10. (a)  The temporally averaged background vorticity field for the post-pairing phase. (b) The 
squared eigenvalue s2 of the strain tensor (cf. 16) for the background field shown in (a).  The spacing 
of the dashed contours, which denote negative values of s2, is larger than the spacing of the solid 
contours by a factor of 3.4. 

amplitude while remaining essentially two-dimensional. The validity of our conclusions 
will be tested by means of a comparison with the numerical simulations of Lesieur et 
al. (1991), in which the flow had access to all three spatial dimensions from the outset. 

The relative vorticity field 7, averaged over the time interval 100 < t < 140, is shown 
in figure lO(a). In figure lO(b), we show the spatial distribution of the squared 
eigenvalue of the deformation tensor i30i/axj, namely : 

which corresponds to the vorticity field shown in figure lO(a). In regions of positive s2, 
the flow consists primarily of a straining deformation and neighbouring Lagrangian 
trajectories diverge exponentially along the principal axis of positive strain. It is in 
these regions that the downscale cascades associated with two-dimensional turbulence 
are most active (e.g. Smyth 1992). Three-dimensional instability is also expected to be 
important in these regions in light of the remarks of Lesieur et al. (1988), who showed 
that three-dimensional motions may be connected with the growth of error (i.e. the 
divergence of nearby parcel trajectories) in the two-dimensional flow. In regions where 
s2 < 0, the flow is essentially rotational, and neighbouring trajectories do not diverge 
(McWilliams 1984; Weiss 1991). 

In previous studies (e.g. Lesieur et al. 1991), the rotation rate has been expressed in 
terms of a Rossby number R,, which is the ratio of some characteristic measure of the 
relative vorticity of the two-dimensional flow to the ambient vorticityf. In our studies 
of the post-pairing phase, we find that the maximum vorticity, which occurs in the core 
of the KH vortex, has the value 0.77. The appropriate Rossby number is therefore 
R, = 0.77/lf l. 

The solid curve in figure 11 denotes the growth rate of the most-unstable mode of 
the post-pairing regime (d  = 1) as a function off .  For f >  0, the mode is rapidly 
stabilized. For f<  0, we observe a small range of stabilization centred nearf= -0.07, 
followed by two ranges in which the instability again achieves substantial growth rates. 
Near - f =  0.35, the growth rate reaches a maximum value of 0.083, an increase of 
28 % over the value obtained in the non-rotating case. As -fis increased further, the 
growth rate drops rapidly and becomes negligible for -f > 0.4. The undulations in the 
fdependence of the growth rate are accompanied by distinct changes in the spatial 
structure of the mode, which is braid-centred atf  = 0 but becomes core-centred above 

s2 = CZ %-Oz lq, (16) 
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FIGURE 12. Same as figure 11, except that d = 2. 

-f  = 0.1 (cf. figure 15). We shall give this mode the designation L,, as it clearly 
represents the continuation to non-zero f of the mode which we denoted L, in our 
previous discussion of the non-rotating case. 

The dashed curve in figure 11 corresponds to a new mode of instability which we 
shall refer to as the edge mode, since its energy is concentrated in the outer region of 
the vortex (cf. figure 16). The edge mode achieves a maximum growth rate of 0.0908 
at - f = 0.22 and is too weak to be resolved for - f > 0.6. The dotted and dash-dotted 
curves in figure 11 indicate the growth rates of the first and second harmonics of the 
edge mode, respectively. These modes are weaker than the stationary edge mode, but 
have large enough growth rates that they may be expected to exert a significant 
influence on the evolution of the flow. Since d = 1, the oscillation frequencies are equal 
to the spanwise phase speeds of the modes, which increase with increasing - f and are 
on the order of one-tenth of the velocity shift across the original shear layer. These 
oscillatory modes occur in complex conjugate pairs, and are therefore expected to 
appear as standing oscillations. 
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FIGURE 13. Real part of the growth rate as a function of dandffor (a) the L, mode, (b) the edge mode 
and (c, d)  the first and second harmonics of the edge mode. Plus signs, crosses and asterisks identify 
modes whose spatial structures are illustrated in figures 14, 15 and 16, respectively. 

In figure 12, we display a ( f )  curves for the L, mode, the edge mode and the 
harmonics of the latter, calculated at spanwise wavenumber d = 2. Qualitatively, the 
results are similar to those obtained for d = 1. Once again, we find that the flow is 
stabilized for all positive values offand also for sufficiently small negative$ The edge 
mode appears at about - f =  0.07 and attains its maximum growth rate = 0.0979 at 
- f =  0.25. This is the largest growth rate that we have found in our explorations of 
the (f, d)-plane, and represents an increase of 60 % over the maximum growth rate 
obtained in the non-rotating case. 

Lesieur et al. (199 1) have performed fully three-dimensional numerical simulations 
of rotating shear layers, and have found that longitudinal instability is maximized 
when the Rossby number, measured using the initial maximum relative vorticity, is 
5 f 2 .  The error tolerance is our estimate, based on Lesieur et al. figure 3(b). The 
equivalent value of -fis between 0.14 and 0.33. Our predicted value lfmazl = 0.25 is 
consistent with this result. The equivalent Rossby number for maximum instability, 
based on the current maximum relative vorticity, is 3.3. 

In figure 13, we present contour diagrams of ar as a function of spanwise 
wavenumber and rotation rate for each of the four modes discussed above. The right- 
hand axes are labelled with the Rossby number. In each figure, the outer contour 
represents aT = 0.03 while successive contours correspond to crT = 0.04,0.05,. . . , etc. 
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FIGURE 14. Perturbation kinetic energy K', spanwise velocity v' and spanwise vorticity 7' fields for 
the dominant unstable modes at f = 0 and (a) d = 0.4, (b) d = 1 and (c)  d = 3. 

Values below 0.03 are difficult to distinguish reliably in the numerical results and the 
corresponding contours are therefore omitted. The plus signs, crosses and asterisks 
which appear on figure 13 represent points at which the spatial structures of the 
eigenmodes are to be displayed in subsequent figures. For I f 1  < 0.07, the spectrum is 
dominated by the L, mode which occurs in the non-rotating case (figure 13 a). As was 
noted in the previous section, the most unstable mode forf= 0 is found at d = 1. The 
flow is stable to three-dimensional perturbations for f > 0.1 and f < - 0.6. The latter 
value corresponds to a Rossby number which is slightly in excess of unity, as would be 
expected based on the heuristic considerations introduced at the beginning of this 
section. For - f > 0.07, the most unstable mode is the fundamental edge mode whose 
growth rate is shown in figure 13 (b). The spanwise wavenumber of the most-unstable 
mode is close to d = 2 for 0.07 < -f< 0.30 and decreases slightly at larger rotation 
rates. 
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FIGURE 15. Same as figure 14, except that d = 1 and (a) - f =  0.02, (b) - f =  0.1 and 
(c) -f  = 0.3. 

To facilitate comparison with experimental and numerical results, we note that the 
spanwise wavelength corresponding to d = 2 (d = 1) is about one-tenth (one-fifth) of 
the spacing between the cores of the large vortices. The half-radius of the large vortex 
is roughly 4 in our units, and the spanwise wavelength corresponding to d = 2 (d = 1) 
is about 0.8 (1.6) times this length. 

In figures 14, 15 and 16, we display the spatial structures of several of the unstable 
modes whose growth rates are shown in figure 1 1. Figure 14 contains the perturbation 
kinetic energy, spanwise velocity and spanwise vorticity for the dominant modes at 
f = 0, d = 0.4, 1.0 and 3.0 (cf. crosses on figure 13a). The mode shown in figure 14(b) 
is the most unstable mode for the non-rotating case in the post-pairing phase. The shift 
from core-centred to braid-centred structure as the spanwise wavenumber is increased 
is evident upon comparison of figures 14(a), 14(b) and 14(c), particularly if one 
inspects the 0’ and 7’ fields. 
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FIGURE 16. Perturbation kinetic energy K’, spanwise velocity v’ and spanwise vorticity 7’ fields for (a) 
the fundamental, (b) the first harmonic and (c) the second harmonic of the edge mode at -f= 0.25, 
d = 2 .  

In figure 15, we illustrate the effect of negativef, by fixing d to unity and displaying 
the dominant modes for the cases -f= 0.02,O. 1 and 0.3 (cf. plus signs on figure 13 a). 
Comparison of figures 14(b) and 15(a) shows that the braid region is stabilized by the 
inclusion of even a very slow ambient rotation ( f =  -0.02), while the core region is 
simultaneously destabilized. As -fis increased further, the instability becomes entirely 
core-centred, as is illustrated in figures 15(b) and 15(c). 

In figure 16, we display the edge mode which occurs a t f =  -0.25, d = 2, along with 
its first and second harmonics (cf. asterisks on figures 13(b), 13(c) and 13(d)). The 
energy associated with this class of modes is restricted to a very well-defined ring 
around the edge of the vortex, a morphology which is entirely distinct from that 
exhibited by the core-centred and braid-centred instabilities. Note that the fundamental 
edge mode has azimuthal wavenumber 2, while the core modes seen previously exhibit 
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azimuthal wavenumber 1. This wavenumber is 1 for the first harmonic, 2 again for the 
second harmonic. The spiral structure of the spanwise velocity fields associated with 
the harmonics indicates that these modes have the form of helical vortex tubes which 
propagate along the outside of the vortex in barber-pole fashion as they grow. 
Numerical simulations of rotating turbulence starting from two-dimensional initial 
conditions with R, - 0.5 have delivered vortices which exhibit this behaviour (P. 
Bartello, private communication). Similar structures have also appeared in stability 
analyses of axisymmetric vortices in a quasi-geostrophic model (Gent & McWilliams 
1986). 

5. On the mechanisms of three-dimensional instability 

enstrophy equation 
The linearized field equations (3) are easily manipulated to form the perturbation 

z, + fizz + @z2 = ijz t2 + ijz g + 7, (u, 
- 7, 9u- 17, 9w + 7, TOY 

+ RP+ RtC+?aCwy  
+ Rep1(f12( + TV'V + @'Q, (17) 

in which ( u , O ,  @) is the background flow and (0, I ,  0) is the associated relative vorticity 
field. ( 2 1 ,  z), w) and (g, 7, Q = (wU - uZ, u, - w,, u, - uy) are the perturbation velocity 
and vorticity fields, respectively. 7, represents the absolute vorticity 71" +f and 
Z = ;(t2 + 7' + c2) is the perturbation enstrophy. Subscripts denote partial derivatives. 
Note that we have dropped the primes which were employed in 93 to identify 
perturbation quantities. The terms on the right-hand side of (17) have been arranged 
into four groups, each of which appears on a separate line. On the first line, we have 
terms which govern the evolution of iE2, the portion of 2 which is associated with the 
streamwise vorticity perturbation. In order of appearance, these three terms represent 
stretching of [ by the background velocity field 6, tilting of < by 6 to create 6, and 
tilting of 7, by u to produce t. Terms on the second line govern the evolution of $ T ~ .  
The first two terms on that line (terms 4 and 5)  represent the advection of 7 by the 
perturbation velocity field, while the third (term 6) describes stretching of 7, by v. 
Terms on the third line govern the evolution of $5". In order of appearance, they 
represent stretching of 5 by the background velocity field @, tilting of 6 by 6' to 
produce 5 and tilting of 7, by w. Terms appearing on the fourth line describe the 
effects of viscosity. 

Our purpose in this section is to assess the relative importance of each of the terms 
on the right-hand side of (17) in driving the growth of the various classes of unstable 
modes discussed in 993 and 4, with a view to obtaining insight into the physical 
processes which generate instability. Naively, one might hope to identify a single term 
which is primarily responsible for growth. In that case, a physical explanation for 
instability would follow easily. We will see, however, that instability can only be driven 
by a combination of effects, and the physical mechanisms involved must be 
correspondingly more complex. This result has been suggested previously by Orszag & 
Patera (1983). Those authors grouped the terms in the perturbation vorticity equation 
into two sets, and showed that neither set of terms, acting alone, could lead to 
exponential growth. 

For example, one may readily understand how the second and ninth terms of the 
right-hand side of (17) might combine to generate instability. The process is illustrated 
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in schematic form in figure 17(a). We assume initially that there exists a background 
spanwise vorticity field ?1" and a perturbation streamwise vorticity field [. Owing to the 
action of term nine on the right-hand side of (17), the shear wl/ (which is associated with 
8 causes background vorticity filaments to be tilted towards the meridional direction, 
thereby generating a perturbation meridional vorticity field 6. In addition, owing to the 
second term on the right-hand side of (17), the shear Cz (which is associated with q) 
tilts 5 filaments towards the streamwise direction. The perturbation streamwise 
vorticity (6) which is created via this second tilting process has the same sign as the 6 
field which we postulated originally, and the latter is therefore reinforced. We expect 
that the positive feedback which is inherent in this two-part process will lead to 
exponential growth of both 6 and 5. The perturbation vorticity vector that is reinforced 
by this interaction lies in the (x,z)-plane and points up and to the right (or, in 
geophysical terms, to the northeast). Had we postulated a [ field with the opposite sign 
to that shown in figure 17(a), the preferred perturbation vorticity would point down 
and to the left (i.e. to the southwest). Because the background flow is independent of 
y ,  the direction of the perturbation vorticity alternates sinusoidally between these two 
orientations as one moves in the y-direction. 

The pair of terms just mentioned contains one member which describes an action 
exerted by the background flow on the perturbation and one which describes the action 
of the perturbation on the background flow. This characteristic is necessary if the pair 
of terms is to involve a feedback loop. The aforementioned grouping of terms which 
was employed by Orszag & Patera (1983) was, in fact, a division of the terms on the 
right-hand side of the vorticity equation into those describing the action of the 
background flow on the perturbation (' action' meaning advection, stretching or 
tilting) and those which describe the action of the perturbation on the background flow 
(also see Bayly et al. 1988). In (17), the corresponding division would place terms 1, 2, 
7 and 8 plus the advection terms on the left-hand side into the first category, and terms 
3, 4, 5,  6 and 9 into the second. From this perspective, it is easy to understand why 
Orszag & Patera found that neither set of terms, acting alone, could generate 
exponential growth: positive feedback can occur only if terms from both categories are 
active. 

Combinations of tilting terms may also interact destructively. In figure 17(b), we 
again postulate a local 6 field and consider the 6 field which would result from the 
tilting action of [ on i j ,  (term 9). However, we now consider the tilting action of 5 on 
q, via term three on the right-hand side of (17). This action creates an additional 
streamwise vorticity perturbation whose sign is opposite to that of the initial [ field. 
These two effects therefore act in competition with one another. 

Note that each vorticity component represents the sum of two spatial velocity 
derivatives, e.g. i j  = G2- W,. In the foregoing examples we have implicitly assumed 
that each term in each such sum has the same sign, and therefore has the same sign as 
the vorticity component. In figure 17(c) we illustrate a case in which this is not true, 
since Cz > 0 and - < 0. This situation occurs in the strained regions (braids) which 
separate the large vortices. In this instance, terms 2 and 8 on the right-hand side of (1 7) 
interact constructively. The reverse situation, in which G2 and - fiz have the same sign, 
occurs in the vortex cores. In that case, terms 2 and 8 compete. (An assumption similar 
to that described above has been made with respect to the perturbation vorticity field. 
Specifically, we have assumed that the factors uy and wy, which appear in terms 3 and 
9 on the right-hand side of (17), may be treated as qualitatively equivalent to the 
vorticity components - 5 and 6, respectively. This assumption may be justified on the 
grounds that adjacent secondary vortices are automatically counter-rotating, owing to 
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FIGURE 17. (a) Mechanism of positive feedback between terms 9 and 2 on the right-hand side of (17). 
(b) Destructive interference between terms 9 and 3. (c)  Positive feedback between terms 2 and 8 in a 
strained region. 

periodicity in y ,  and are therefore separated by regions of pure translation rather than 
by regions of strain.) 

Figure 17 illustrates only a few of the many possible interactions between vortex 
tilting mechanisms (i.e. between the processes described by terms 2, 3, 8 and 9 on the 
right-hand side of (17)). Clearly, an unstable normal mode must be spatially configured 
so as to take maximal advantage of some interaction which promotes growth, while 
avoiding effects which retard that process. The stretching effects represented by terms 
1 and 7 may further reinforce the and fields, but those effects, acting alone, cannot 
drive exponential growth since they involve no positive feedback. 

We have now seen how the physical processes described by the terms on lines one 
and three of the right-hand side of (17) may interact to govern the evolution of the 
enstrophy associated with the and 5 fields. The terms on the second line, which affect 
only the perturbation spanwise vorticity, will be shown later in this section to be 
relatively unimportant. Terms 4 and 5 may drive growth via downgradient transfer of 
background vorticity, a process which is similar to the generation of two-dimensional 
instability in parallel flow via downgradient momentum transport (e.g. Smyth & Peltier 
1989). Term 6 represents the stretching of background vorticity by the spanwise 
velocity perturbation, as was discussed in the previous section. The remaining terms 
(those appearing on line four) describe viscous effects, and act only to damp instability. 

To cast (17) into a form which is more useful for the present purpose, we apply the 
spatial averaging operator 

(.) = J T d x r d y r d z ,  

which removes the spatial dependences, annihilates the second and third terms on the 
left-hand side of (17) and renders the viscous terms negative semidefinite. (Note that 
this definition of the averaging operator differs slightly from that employed in previous 
sections.) We then assume that the perturbation consists of a single unstable mode, so 
that (Z,)  may be replaced by 2a(Z), and finally divide through by 2(Z).  The 
resulting equation reveals the portion of the growth rate which is contributed by each 
of the terms on the right-hand side of (17), namely: 

10 

0- = x 0-k, 
k=l 
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(0.3,l.O) (031 .o> (0.25,2.0) (0,3.0) (0,0.4) 
Type Core Braid Edge Braid Core 

Z ( X )  0.439 0.491 0.580 0.498 0.445 
ZW' 0.170 0.077 0.129 0.01 1 0.290 
Z(Z) 0.390 0.432 0.291 0.492 0.264 
0- 0.0827 0.0642 0.0979 0.0428 0.0589 
ff1 0.0002 0.0145 0.0345 0.0158 0.0082 
f f2  0.1773 0.0463 0.0292 0.0478 0.0670 

-0.1383 -0.0263 0.0032 - 0.0262 - 0.0474 
r 3  

-0.0054 0.0016 0.0028 0.0001 -0.0012 ff4 
0.0127 0.0018 0.0053 0.0000 0.0106 

ff5 
ff6 0.0074 0.0025 0.0074 0.0008 0.0091 
g 7  0.001 1 -0.0093 0.0179 -0.01 00 -0.0053 
ff8 -0.0969 0.0125 0.0282 0.0212 - 0.0184 
ff9 0.1286 0.0268 -0.0131 0.0255 0.0400 

- 0.0078 - 0.0062 -0.0194 -0.0323 -0.0037 ff10 

(f, 4 

TABLE 1. Partial enstrophies, total and partial growth rates [cf. (17), (18)] for five of the unstable 
modes discussed in $4 

in which ( T ~  = s k / 2 ( Z )  and 

s1 = <~,li12) s2 = <OZ(i*)i) s3 = d(r",(&*)i) 

$7 = <Rlt12) 3 8  = <R(l*>i> Sg = d<r",(&*)i) 

sI9 = --e-'<(1ViI2 + ~ $ 1 ~  + IV~ I~ ) ) .  

The subscripts r and i denote the real and imaginary parts, respectively, and stars 
indicate complex conjugation. (zi, 0, S) and (l, $, 0 are the complex amplitudes of the 
perturbation eigenfunctions. The reader will note that the three viscous terms which 
appear on the right-hand side of (17) have been combined into a single expression sl0. 
Otherwise, the ordering of the terms on the right-hand side of (17) has been preserved. 

In table 1, we display the total growth rate (T and the partial growth rates (Tk for a 
representative subset of the unstable modes which were discussed in $4. Also included 
in table 1 are the values of the fractional enstrophies Z(,) = ( ; t 2 ) / ( Z ) ,  Z(y) = (k2)/ 
( Z ) ,  and Z(') = ( i$ ) / (Z ) .  These quantities indicate the overall orientation of the 
perturbation vorticity field. Note that [ is generally the strongest component of the 
perturbation vorticity, while 7 is generally the weakest. As was done in the previous 
section, we group the unstable modes into three categories based on the spatial location 
at which the perturbation is strongest, i.e. core modes, braid modes and edge modes. 
In the following three subsections, we shall discuss the physical mechanism that 
supports the growth of each of these classes of modes in turn. 

s4 = - ($,(zi$*)~) s5 = - (r"z('$*)r) '6 = d(r",(fO*)i> 

5.1. The core mode 
In this subsection, we shall consider the core-centred mode which dominates the 
spectrum a t f =  0.3, d = 1 (cf. figure 15c). Core modes are found in many regions of 
the (f, d)-plane (figure 13 a) ; their properties are qualitatively similar and are well 
represented by this example. Referring to the data given in the first column of table 1 ,  
we see that the perturbation enstrophy is dominated by the terms it2 and ;$, so that 
the perturbation vorticity tends to be oriented close to the (x, 2)-plane. In addition, the 
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FIGURE 18. (a) Mechanism of positive feedback between terms 3 and 8 on the right-hand side of (17). 
(b) Clockwise vortex whose aspect ratio exceeds unity. The two-ended arrow indicates the preferred 
orientation of the perturbation vorticity. (c) Same as (b) but with aspect ratio less than unity. If the 
sense of the background vorticity is counterclockwise, the orientations of the perturbation vorticity 
vectors in (b) and ( c )  are interchanged. 

partial growth rates cr4, cr5 and cr6, which correspond to the terms on the right-hand side 
of (17) that govern the evolution of iq2, are relatively small. Spanwise perturbation 
vorticity is therefore of secondary importance for this mode. 

Turning to the terms which govern the evolution of $6' and +<', namely terms 1, 2 
and 3 and terms 7, 8 and 9, we see that the contributions of largest magnitude come 
from the tilting terms 2, 3 ,  8 and 9. It is not surprising that the stretching terms (terms 
1 and 7) are unimportant in this example, since the Cz and fields, to which those 
terms are proportional, are very weak in the core region. 

Terms 2 and 8 describe the tilting of perturbation vorticity filaments by the 
background flow, while terms 3 and 9 represent tilting of the background absolute 
vorticity +j, by the perturbations. As was noted in the previous subsection, a pair of 
terms which delivers positive feedback (and consequently exponential growth) must 
contain one term of each type. In the discussion of figure 17(a), we saw how terms 9 
and 2 interact to form a feedback loop. (For brevity, we shall subsequently refer to this 
mechanism as the '9-2 loop'.) The perturbation vorticity field which is reinforced by 
this loop points upwards and to the right (or the reverse). In figure 18 (a), we illustrate 
a similar interaction between terms 3 and 8. A given vertical vorticity perturbation < 
tilts the background vorticity +, to create [ (term 3 ) ,  while the resulting [ is tilted by 
the background vorticity (term 7) to reinforce the < perturbation which we postulated 
originally. We call this mechanism the '3-8 loop', and note that it acts to reinforce a 
perturbation vorticity which points downwards and to the right (or the reverse). The 
reader will note that the 3-8 loop and the 9-2 loop are identical but for a 90" rotation 
in the (x,z)-plane. 

The tilting terms in (17) therefore support two positive feedback mechanisms, either 
of which could drive exponential growth. However, these two mechanisms act in 
opposition to one another. We saw in figure 17(b) that terms 3 and 9 work against each 
other; a similar result holds for terms 2 and 8. Therefore, if the 9-2 loop and the 3-8 
loop operate simultaneously and with similar strength, we expect that the resulting 
destructive interference will prevent instability from occurring. If the 9-2 loop 
dominates, then we expect to observe an unstable mode for which the vorticity vectors 
point upwards and to the right, while dominance of the 3-8 loop generates instability 
such that the perturbation vorticity points downwards and to the right. 

Which property of the background flow determines which feedback loop, if either, 
will dominate? Inspection of (17) shows that terms 3 and 9 are both proportional to 



Three-dimensionalization of barotropic vortices 57 

the absolute vorticity +,, while term 2 is proportional to f i 2  and term 8 is proportional 
to Rz. Note also that the factor [< is common to the latter two terms. While there is 
nothing to choose, a priori, between terms 3 and 9, the relative magnitudes of terms 2 
and 8 are clearly governed by the relative magnitudes of f i 2  and R. The relative 
magnitudes of the latter two fields are determined by the ellipticity of the vortex core. 
If the core is elliptical with aspect ratio exceeding unity then I ozl > I fix.. As a result, 
the 9-2 loop dominates and the vorticity perturbation points upwards and to the right, 
as is illustrated in figure 18 (b). On the other hand, if the aspect ratio is less than unity, 
then IRl > Ifizl and the 3-8 loop dominates, as shown in figure 18(c). Note that the 
orientations of the preferred vorticity perturbations in the two cases shown in figures 
18(b) and 18(c) would be interchanged if the background vorticity were counter- 
clockwise rather than clockwise. The foregoing observations may be summarized 
concisely by stating that the preferred vorticity perturbation on an elliptical vortex is 
oriented in the quadrant located downstream of the semi-minor axis. Finally, if the 
ellipticity of the vortex core vanishes, the two feedback mechanisms cancel and there 
is no instability. This property is obviously reminiscent of the elliptical instability, 
which was shown in $3.1 to represent a reasonable idealization of the core modes which 
our stability analyses have delivered. 

In the present instance, the aspect ratio of the vortex core exceeds unity, and we 
therefore expect that the 9-2 feedback loop will dominate. Inspection of the data given 
in table 1 confirms that growth of the core mode is driven primarily by terms 9 and 2 
and is opposed by terms 3 and 8. Closer inspection of the results of the stability 
analyses also reveals that the perturbation vorticity field tends to point up and to the 
right or down and to the left, as expected. For example, we show in figure 19 selected 
filaments of the total vorticity field, i.e. + plus a perturbation proportional to the core 
mode, and note that the orientation of the filaments is consistent with the scenario 
illustrated in figure 18 (b). From careful comparison of Pierrehumbert’s (1986) figure 2 
and our figure 3 (or any of our figures 14 (a),  15 (b) and 15 (c), it may be inferred that 
the idealized elliptical instability exhibits the same spatial structure (i.e. that shown in 
figure 18b). This orientation of the perturbation vorticity field is also visible in the 
linear numerical simulations of Corcos & Lin (1984, figure 13). 

Detailed investigations of core-centred modes which occur in other regions of the 
(f, d)-plane (figure 13a) have yielded results similar to those described above. To 
illustrate this, we present data pertaining to a second example of a core mode, namely 
that found at f = 0, d = 0.4 (figure 14a) in the fifth column of table 1. Comparing 
columns 5 and 1, we see that the relative magnitudes of the crk are qualitatively similar 
in the two cases. These results further reinforce our conviction that the instability 
mechanism described above is valid for core-centred modes in general. We conclude 
that the core modes discovered here may be identified with Pierrehumbert’s (1986) 
elliptical instability, and that this instability is driven primarily by a feedback loop in 
which [ tilts q, to create <, and q, simultaneously tilts < to reinforce [. The result is an 
instability which can only occur when the vortex core exhibits non-zero ellipticity, and 
which has the spatial structure that is represented schematically in figure 18 (b). 

5.2. The braid mode 
We turn now to an examination of the mechanics ol” the braid mode, using as an 
example the unstable mode found a t f =  0, d = 1 (cf. figure 14b). The relevant results 
are shown in the second column of table 1. For purposes of comparison, the 
corresponding data for a second example of a braid mode are shown in the fourth 
column. As in the case of the core mode, we observe that the perturbation vorticity 
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FIGURE 19. Selected vortex filaments for the vorticity field consisting of the background vortex 
plus a perturbation proportional to the core mode. 

vector tends to lie close to the (x, z)-plane, and that the partial growth rates (T~, ( T ~  and 
cr6, which contribute to the growth of the spanwise vorticity, are correspondingly small. 

In contrast to the previous case, we find that the stretching terms (1 and 7) are 
comparable in magnitude to the tilting terms (2, 3, 8 and 9). Detailed examination of 
the spatial dependences of these terms reveals that the stretching terms act only near 
the tips of the perturbation vortex tubes (cf. figure 14b), while the tilting terms are 
active throughout the spatial extent of the eigenmode. In particular, the tilting terms 
are solely responsible for the growth of theperturbation in the region near the 
stagnation point. (This is because the fiz and W,  fields, to which the stretching terms 
are proportional, are weak in this region.) From the morphology of the background 
flow, it is clear that perturbation enstrophy is created in the stagnation region by the 
tilting terms, and is subsequently advected along the principal axis of strain to a region 
on the edge of the large vortex in which I fizl and I are large, and the stretching terms 
can therefore modify the perturbation. The fact that the stretching terms act in 
opposition to each other (i.e. ( T ~  (T, < 0) is a simple consequence of incompressibility. 

As in the case of the core mode, we find that the growth of the braid mode in the 
stagnation region is driven primarily by the 9-2 feedback loop. In contrast to the 
previous case, however, growth is now aided by term 8, and opposed only by term 3. 
This is because, although the background vorticity f = oz- is positive in the 
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FIGURE 20. The approximate orientation of the perturbation vorticity associated with the edge 
mode at selected points on the edge of the background vortex. 

strained region (as it is everywhere), oz and - qz have opposite signs. Referring to 
figures 17(a) and (17(c), we see that term 8 now acts in concert with terms 2 and 9, 
creating a three-way feedback loop. Term 3 ,  however, acts in opposition to this 
mechanism, as is shown in figure 17(b). 

We conclude that the enstrophy associated with the braid mode is created near the 
stagnation point by a positive feedback loop involving the tilting of i j  by 5 to create 5, 
the tilting of 5 by oz to create 6 and the tilting of c by to create 5. The tilting of i j  
by 5 opposes this process by creating of the wrong sign. Enstrophy generated via this 
process is advected away from the stagnation region and is subsequently enhanced by 
the total effect of the stretching terms. The scenario just described is consistent with 
that proposed by Corcos & Lin (1984); its validity is confirmed in the present study via 
the quantitative analysis of the perturbation enstrophy budget. 

5.3. The edge mode 
The physical mechanism of the edge mode (figure 16a) is more complex than that of 
either the core mode or the braid mode, since the morphology of the background flow 
in the edge region is more complicated than either the simple rotation of the core or 
the strain field found in the braid regions. Nevertheless, the understanding of the core 
and braid modes which we have developed in the previous two subsections equips us 
well to understand the more intricate mechanism of the edge mode. 

Examining the third column of table 1 ,  we see that the perturbation vorticity is, as 
usual, mainly confined to the (x, z)-plane. It is evident that a relatively large number 
of terms contribute to the growth of the modes. Overall, terms 1, 2, 7 and 8 act to 
promote growth, while term 9 acts in opposition. However, close inspection of the 
spatial dependences of the quantities appearing on the right-hand side of (17) reveals 
that different terms are important at different spatial locations. In particular, terms 3 
and 9 are large and positive in some regions, large and negative in others, so that the 
spatially averaged magnitudes of those terms presented in table 1 are misleading. The 
advection terms which appear on the left-hand side of (17) do not affect the spatially- 
averaged perturbation enstrophy, but they dominate locally, acting to carry the 
perturbation in the clockwise direction around the edge of the vortex. 

The approximate orientation of the perturbation vorticity vector as a function of 
space is shown in figure 20. Eight stations on the edge of the vortex have been marked 
for reference in the discussion which follows. At station 1 ,  the eigenvalues of the strain 
tensor (cf. figure lob)  are real, and the flow geometry is therefore essentially that of a 
strain field. At station 2, the stretching field Cz is large and positive. The dynamics of 
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the instability in this region are therefore similar to those of the braid mode (cf. $5.2). 
At station 1, the tilting terms interact to create perturbation vorticity which points up 
and to the right (or the reverse). That disturbance is advected to station 2, where its x- 
component is enhanced by the stretching action of term 1. 

In the vicinity of station 3, the eigenvalues of the strain tensor are imaginary, and 
the flow therefore has the character of a rotation. As a result, the mechanism of 
instability is similar to that found in the core region (cf. $ 5.1). In addition, I > I oZl 
in this region, so that the 3-8 feedback loop is stronger than the 9-2 loop and the 
resulting vorticity perturbation points downwards and to the right (or the reverse). 
Perturbation vorticity created by this mechanism is then advected to station 4, where 

is large and positive. As a result, the meridional vorticity y is enhanced by the 
stretching action of term 7. 

As the disturbance is carried onward past stations 5-8, the sequence of processes 
described above is repeated. In summary, the edge mode is driven by a combination of 
the processes which drive the core mode and those which drive the braid mode, aided 
by the advective action of the background flow. 

6. Summary 
Our goal in this study has been to gain insight into the manner in which small- 

amplitude three-dimensional circulations develop in otherwise two-dimensional flow. 
This three-dimensionalization process is of particular interest in the context of 
geophysical fluid dynamics, since geophysical flows are often strongly dominated by 
horizontal motions. We have chosen to focus on a horizontal flow that consists of the 
array of barotropic vortices which forms as a result of the growth and pairing of 
Kelvin-Helmholtz waves on a meridionally-sheared zonal current. (The specification 
of zonal initial flow is made for definiteness only; the validity of our results is 
independent of the direction of the horizontal flow.) Rotational effects have been 
incorporated by invoking the f-plane approximation (e.g. Gill 1982). 

As our starting point, we have considered the special case in which f =  0. In the 
context of this special case, the competition between three-dimensional instabilities and 
the transverse pairing mode which dominates the two-dimensional evolution of the 
flow has been investigated. We have tested the stability of the two-dimensional flow to 
three-dimensional perturbations during three separate phases of the evolution of the 
two-dimensional flow, namely the pre-pairing, pairing and post-pairing regimes. To 
account for the time-dependence of the two-dimensional flow, we have supplemented 
the standard multiple-timescale method of stability analysis with the newly-developed 
TASM technique. 

In the pre-pairing phase, we have found that the spectrum of secondary instability 
is dominated at high spanwise wavenumbers (d > 1.5) by modes which are configured 
such that the perturbation kinetic energy is concentrated in the braids between the 
large vortices, at moderate wavenumbers (0.3 < d < 1.5) by motions which are 
concentrated in the vortex cores, and at low wavenumbers (d < 0.3) by the pairing 
mode. We have found it natural to separate the various instabilities into two groups: 
those whose streamwise wavelengths are similar to that of the large vortices (the 
longitudinal modes), and those whose streamwise wavelengths are twice that of the 
large vortices (the subharmonic modes). The former class of modes includes PW’s 
translative instability as well as the braid mode which was first observed in the 
laboratory experiments of Breidenthal(l98 1). The latter category includes the pairing 
instability, which becomes PW’s helical pairing mode at small but non-zero spanwise 
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wavenumber, as well as a number of smaller-scale helical pairing modes whose 
existence has not been noted previously. These new modes exhibit strong helicity, and 
growth rates which render them competitive with the previously discovered instabilities 
listed above. The subset of modes whose energy is concentrated in the vortex cores 
have been identified as manifestations of Pierrehumbert’s (1986) elliptical instability. 

During pairing, the spectrum is dominated by the unstable modes of the emerging 
subharmonic vortex. Modes which are associated with the original KH vortices are 
rapidly stabilized once pairing has begun. Since the growth rates of the unstable modes 
associated with the single (merged) vortex state are roughly half those of the 
corresponding modes in the pre-pairing state, we observe a marked stabilization of the 
flow at the onset of pairing. This result concisely explains the results of Metcalfe et al.’s 
(1987) three-dimensional simulations. 

Although the core-centred modes exhibit substantial growth rates, the most unstable 
modes are those whose energy is concentrated in the braid regions. Corcos & Lin 
(1984) have addressed the problem of three-dimensionalization of an evolving shear 
layer by solving the linear initial-value problem directly (cf. (7) and the accompanying 
discussion). In that study, it was concluded that three-dimensional circulations occur 
primarily in the vortex cores. The reason for the apparent discrepancy with the results 
reported here lies in Corcos & Lin’s choice of values for the spanwise wavenumber. 
They employed values in the range 0.1 < d < 0.7, and therefore did not observe the 
dominance of the braid mode, which occurs at higher values of d. It is also possible that 
additional calculations performed using larger d would have delivered relatively low 
growth rates in consequence of the low Reynolds number (Re = 50) which Corcos & 
Lin assumed in their analyses. 

It has often been remarked (e.g. PW; Orszag & Patera 1983; Pierrehumbert 1986; 
Smyth & Peltier 1991) that three-dimensional modes tend to be strongly unstable over 
a broad range of spanwise wavenumbers whose extent is limited only by viscous effects, 
i.e. that three-dimensional instability is capable of transferring energy from large-scale 
motions directly into the viscous subrange. In our investigations of the non-rotating 
(f= 0) case, we have found that the time-dependence of the two-dimensional flow, 
however weak it may be, can act to decorrelate small-scale modes and therefore to 
impose a short-wave cutoff on the spectrum independently of the action of diffusion. 
This has led us to suggest that the direct transfer of energy into the dissipative subrange 
may occur only when the two-dimensional flow is precisely in equilibrium. 

In our analyses of the rotating case, we have focused (without significant loss of 
generality) upon the post-pairing phase. We have seen that weak anticyclonic rotation 
(i.e. rotation which tends to bring the absolute vorticity of the mixing layer closer to 
zero than is the relative vorticity) acts to destabilize the flow. Maximal destabilization 
is found when f = -0.25 (or when the Rossby number R, = q+/f, in which q+ is the 
current maximum vorticity in the vortex core, takes the value 3.3). In this instance, the 
growth rate of the most unstable mode is 0.0979 (in units of the original maximum 
vorticity), compared with 0.0645 in the non-rotating case. The spanwise wavenumber 
of the most unstable mode is then d = 2 (in units of the original half-depth of the shear 
layer), compared with d = 1 in the non-rotating case. Alternatively, the spanwise 
wavelength is slightly less than the radius (resp. diameter) of the two-dimensional 
vortex in the rotating (resp. non-rotating) case. The energy of the most unstable mode 
for the casef = - 0.25 is concentrated around the edge of the two-dimensional vortex, 
and we therefore refer to this mode as the edge mode. This new mode of instability is 
a unique property of rotating flows, in that its structure differs qualitatively from that 
of any instability which has been found previously in the non-rotating case. In contrast, 
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the energy of the dominant mode for the non-rotating case is concentrated in the braids 
between the large vortices. As expected in consequence of Lesieur et al. s (1991) 
numerical simulation results, we have found that rapid anticyclonic rotation, or 
cyclonic rotation at any speed, acts to stabilize the flow. 

In $ 5 ,  we have sought to present mechanistic explanations for several aspects of the 
three-dimensionalization process. We have found that the core modes (and hence 
Pierrehumbert’s elliptical instability) are driven by the interaction of two pairs of vortex 
tilting mechanisms, either of which would generate exponential growth if acting alone, 
but which act in opposition to each other. The relative strengths of these two 
mechanisms are determined by the ellipticity of the vortex core; if this ellipticity 
vanishes then the two mechanisms cancel and there is no instability. Consideration of 
these two competing growth mechanisms has also enabled us to predict the spatial 
morphology of the core modes. Similar mechanistic descriptions have been presented 
for the braid modes, and for the fundamental edge mode which dominates the 
instability spectrum in the rotating case. 

The view that three-dimensional instability of two-dimensional flow is driven 
primarily by interactions of vortex tilting terms was first enunciated (to our knowledge) 
by Orszag & Patera (1983). Our goal in $ 5  has been to describe that scenario in detail 
and to demonstrate its importance quantitatively via an analysis of the perturbation 
enstrophy budget. An alternative view, stated most recently by Waleffe (1990), holds 
that three-dimensional perturbations grow as a result of the stretching of perturbation 
vorticity by the strain field associated with the two-dimensional flow. Waleffe provides 
an example of a perturbation that grows exponentially as a result of this mechanism. 
However, that perturbation is unrealistic in that it is spatially uniform, and therefore 
obeys no boundary conditions. Orszag & Patera (1983) have proved rigorously that the 
deformation of perturbation vorticity by the background flow cannot drive normal- 
mode instability. The results described in the present paper strongly suggest that, while 
vortex stretching is not unimportant, the three-dimensionalization process is driven 
primarily by positive feedback between pairs of vortex tilting terms. 

We have so far been unable to determine why the presence of non-zerofinfluences 
the spatial structure of the preferred instability as it does. Lesieur (1991, $3.3.1) has 
suggested that the most unstable regions of the two-dimensional background flow 
should be those in which the deformation is large and in which the absolute vorticity 
is small. Our observation that the braid mode is dominant when f = 0 while the edge 
mode dominates when f < 0 is consistent with this proposal. The braid regions are 
moderately deformed and have i j ,  close to zero whenf= 0, whereas the edge region is 
strongly deformed and has 7, close to zero when f <  0. The existence of strongly 
unstable core modes, in both the non-rotating and rotating cases, seems inconsistent 
with this picture since the core region is rapidly rotating and is only weakly deformed. 
However, the physical arguments given in 9 5.1 suggest that this weak deformation is 
crucial to the growth of the instability. In addition, we have seen that the core region 
becomes more unstable as -fincreases, i.e. as the absolute vorticity is decreased. Our 
results therefore indicate that either a deformed background flow or a small value of 
the absolute vorticity (i.e. I i j  +fl z 0) may be locally conducive to instability, as Lesieur 
has suggested. 

Additional insight into this issue may be obtained by considering the mechanism of 
inertial instability, via which an axisymmetric vortex exhibits growing, axisymmetric 
perturbations. Using mechanistic arguments, Rayleigh (19 16) showed that this 
instability should occur wherever the product of the angular velocity 07 and the 
vorticity i j  of the background flow is negative. The same arguments apply in a rotating 
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reference frame, providzd that the angular velocity and vorticity are evaluated in the 
inertial frame, i.e. d +sZ = d ++A 71" + f a  = 71" + f (Kloosterzeil & van Heijst 1991). In 
the present case, the spatial location of the edge mode corresponds in a crude sense to 
the region in which SZ", 7, is negative. In the cyclonic case, SZ"", q, is positive definite, and 
the edge instability does not occur. Although Rayleigh's assumption of axisymmetric 
flow is violated in the present case, it seems plausible that the physical mechanism 
could be similar, i.e. that the edge mode could be essentially a manifestation of inertial 
instability. 

? 
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